## Solutions 7

## Exercise 13.4

Since $\operatorname{var}(s[n])=a^{2 n+2} \sigma_{s}^{2}+\sigma_{u}^{2} \sum_{k=0}^{n} a^{2 k}$, we have

$$
c_{s}[m, n]=a^{m-n}\left(a^{2 n+2} \sigma_{s}^{2}+\sigma_{u}^{2} \sum_{k=0}^{n} a^{2 k}\right)=a^{m-n} \operatorname{var}(s[n])=a^{m-n} c_{s}[n, n]
$$

## Exercise 13.6

From (13.14), we know that $\mathbb{E}(\mathbf{s}[n])=\mathbf{A}^{n+1} \boldsymbol{\mu}_{s}$. Let the eigen-decomposition of $\mathbf{A}$ be $\mathbf{A}=\mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^{T}$. Thus, $\mathbf{A}^{n+1}=\mathbf{V} \mathbf{\Lambda}^{n+1} \mathbf{V}^{T}$

$$
\mathbb{E}(\mathbf{s}[n])=\mathbf{V} \boldsymbol{\Lambda}^{n+1} \mathbf{V}^{T} \boldsymbol{\mu}_{s}=\sum_{i=1}^{P} a_{i} \lambda_{i}^{n+1} \mathbf{v}_{i}
$$

where $a_{i}=\left(\mathbf{V}^{T} \boldsymbol{\mu}_{s}\right)_{i}$ and $\mathbf{V}=\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{P}\right)$. If any $\left|\lambda_{i}\right|>1, \mathbb{E}(\mathbf{s}[n]) \rightarrow \infty$ and $\left|\lambda_{i}\right|<1$, $\mathbb{E}(\mathbf{s}[n]) \rightarrow 0$.

## Exercise 13.10

From (13.38) to (13.42) with $a=1$ and $\sigma_{u}^{2}=0$, so that $s[n]=s[n-1]=A$. We can get the prediction stage

$$
\begin{gathered}
\hat{A}[n \mid n-1]=\hat{A}[n-1 \mid n-1] \quad M[n \mid n-1]=M[n-1 \mid n-1] \\
K[n]=\frac{M[n-1 \mid n-1]}{\sigma^{2}+M[n-1 \mid n-1]} \\
\hat{A}[n \mid n]=\hat{A}[n-1 \mid n-1]+K[n](x[n]-\hat{A}[n-1 \mid n-1]) \\
M[n \mid n]=(1-K[n]) M[n-1 \mid n-1]
\end{gathered}
$$

or changing the notation, we have

$$
\begin{gathered}
K[n]=\frac{M[n-1]}{\sigma^{2}+M[n-1]} \\
\hat{A}[n]=\hat{A}[n-1]+K[n](x[n]-\hat{A}[n-1]) \\
M[n \mid n]=(1-K[n]) M[n-1]
\end{gathered}
$$

These equations are just from (12.34) to (12.36). Hence, from section 12.6, we have

$$
\begin{gathered}
\hat{A}[n]=\frac{\sigma_{A}^{2}}{\sigma_{A}^{2}+\sigma^{2} / n+1} \cdot \frac{1}{n+1} \sum_{k=0}^{n} x[k] \\
M[n-1]=\frac{\sigma_{A}^{2} \sigma^{2}}{n \sigma_{A}^{2}+\sigma^{2}} \\
K[n]=\frac{\sigma_{A}^{2}}{(n+1) \sigma_{A}^{2}+\sigma^{2}}
\end{gathered}
$$

## Exercise 13.11

From (13.39), (13.40) and (13.42)

$$
\begin{gathered}
M[n \mid n-1]=0.81 M[n-1 \mid n-1]+1 \\
K[n]=\frac{M[n \mid n-1]}{\sigma_{n}^{2}+M[n \mid n-1]} \\
M[n \mid n]=(1-K[n]) M[n \mid n-1]
\end{gathered}
$$

where $M[-1 \mid-1]=\sigma_{s}^{2}=1$
For (a), the gain $\rightarrow 1$ since the observations become less noisy and thus $\hat{s}[n \mid n] \rightarrow x[n]$, but (c) is opposite. For (b) the gain and MMSE sequences attain a steady state after a few iterations. Figures are omitted.

## Exercise 13.13

Since $\mathbb{E}(s[n])$ is known, the MMSE estimation of $s^{\prime}[n]=s[n]-\mathbb{E}(s[n])$ is $\hat{s}^{\prime}[n]=$ $\hat{s}[n]-\mathbb{E}(s[n])$ and the MMSE is the same as for $\hat{s}[n]$. Thus, $M[n \mid n]$ and $M[n \mid n-1]$ do not change. Also, then $K[n]$ does not change.

Prediction:

$$
\begin{gathered}
\hat{s}^{\prime}[n \mid n-1]=a \hat{s}^{\prime}[n-1 \mid n-1] \\
\hat{s}[n \mid n-1]-\mathbb{E}(s[n])=a(\hat{s}[n-1 \mid n-1]-\mathbb{E}(s[n-1]))
\end{gathered}
$$

Since $\mathbb{E}(s[n])=a \mathbb{E}(s[n-1])$, we have $\hat{s}[n \mid n-1]=a \hat{s}[n-1 \mid n-1]$
Correction:

$$
\begin{gathered}
\hat{s}^{\prime}[n \mid n]=\hat{s}^{\prime}[n \mid n-1]+K[n]\left(x^{\prime}[n]-\hat{s}^{\prime}[n \mid n-1]\right) \\
\hat{s}[n \mid n]-\mathbb{E}(s[n])=\hat{s}[n \mid n-1]-\mathbb{E}(s[n])+K[n](x[n]-\mathbb{E}(x[n])-\hat{s}[n \mid n-1]+\mathbb{E}(s[n]))
\end{gathered}
$$

But $\mathbb{E}(x[n])=\mathbb{E}(s[n])+\mathbb{E}(w[n])=\mathbb{E}(s[n])$. Thus, we have the same equations as before. The only differences arises in the initialization since $\mu_{s} \neq 0$

## Exercise 13.14

In steady state, we have $M[n \mid n]=M[\infty], M[n \mid n-1]=M_{p}[\infty]$ and from (13.42)

$$
M[\infty]=(1-K[\infty]) M_{p}[\infty]<M_{p}[\infty]
$$

since $K[\infty]<1$. Thus, for large $n, M[n \mid n-1]>M[n-1 \mid n-1]$. This is reasonable since $s[n]$ is harder to estimate than $s[n-1]$ based on $\{x[0], x[1], \ldots, x[n-1]\}$ due to the added variability (not sure) of the $u[n]$ noise term.

## Exercise 13.15

From (13.38), $\hat{s}[n+1 \mid n]=a \hat{s}[n \mid n]$. Now if $\sigma_{n+1}^{2} \rightarrow \infty$, the future measurements will be useless so that the corrected estimation will be prediction or will be based on only $\{x[0], \ldots, x[n]\}$. Thus,

$$
\begin{gathered}
\hat{s} \rightarrow \hat{s}[n+1 \mid n]=a \hat{s}[n \mid n] \\
\hat{s}[n+2 \mid n+1]=a \hat{s}[n+1 \mid n+1]=a^{2} \hat{s}[n \mid n]
\end{gathered}
$$

etc.

